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Abstract

We present a new method for approximating the partition function of 2D Ising models using
a transfer matrix of order 2. For v = 30 our current program tock about 20 seconds on
a Sparc station to obtain 4 correct decimals in the top two eigenvalues and 5 minutes for
G correct decimals. Eigenvectors were computed at the same time. Tlhe temperature was
within 3% of critical.

The main idea is to force certain entries in vectors to have the same values and 1o find
the crudest representation of this tvpe that delivers the required accuracy. At no time does

our program work with vectors with 2" entries.




1 Introduction

The Ising model was proposed 10 explain properties of ferromagunets but since then it has
found application to topics in Chemistry and Biology as well as in Physics. For any reader
unfamiliar with the model an excellent introduction targeted at a general audience i~ [Cips7].
The remainder of this section assumes some knowledge of the so called trausfer matrix. This
paper presents a numerical method for computing properties of the 2D Ising model for given
parameter values such as magnetic field strength B. temperature T and coupling constants
J.

Tlere are two avenues leading to such calculations: combinatorial aud algebraic. Qur
metliod is in the second category which makes use of a transfer matrix 1/, associated with
a semi-infinite helical grid of “spins™ or “sites™ with n of them on each circular baud. One
form of M, for n = 3 and » = 1. with the field strength B normalized with respect 10 the

coupling constant J is as follows:
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where (with appropriate normalizations)

(.’-E)/T_ l B/T (~2—-8B)'T

h = ¢~ and = ¢

a =«

The attractive property of M, i~ that it is a nonnegative irreducible matrix whose
dominant eigenvalue (called the Perron root) is the wauted partition function per spin.
Thus it is only necessary to approximate this eigenvalue to the desired accuracy although
the associated eigenvectors are also useful in approximating quantities of phvsical interest.
Moreover M/, is exceedingly sparse: it has exactly 2 nou-zero entries per row (and columu)
arranged in a regular pattern. There i~ only one difficultv: M, is of order 2" and we are
interested in the case n — x. We know of no calculations with n > 20 up till now.

Our approach uses a finite family {8, ; 12’1 of orthogonal indicial vectors. and approx-
imates the top two column and row eigenvector of M, from the subspace spanned hy
S,

Step 0. Iuitialize / 10 1.

Step 1. Represent in compact form. the orthogonal projection P of the transfer matrix
I ! pro,

M, onto the subspace span(8, ;).

Step 2. Compute the two lareest eieenvalues and the associated column eigenvectars of
I’. These are. in a sense. the hest approximations from the given indicial suhspace

spant S, ;). However they mayv not be goad enougl.

Step 3. Lvalnate residual norms. coudition numbers and associated error honnds and e~-
tmates. If the estimates are satisfactory then compute the required properties of the
model and stop. Otherwise return to Step 1 with the next member of each family. i.e.

lmerease [ by 1.

Our coal i~ to creep up 1o the coarsest of our vector representations that permits ap-
proximations of the desired accuracy. This minimal representation. which is not known in
advance. gave us the name for our approacl.

Note that the difficulty Lies not in A, itself but in the the representation of vectors
in R*". Indeed the special structure of M, would permit evaluation of M, r for auv 27-
dimensional vector » with great efficiency. However a procedure that costs (2" ) may be
too much when n is large and our central problem is the representation of vectors in R*".

Sparse vectors occur in sparse matrix work and N. Fuchs [Fuck9]. wheu applving the
Power Method to M, . keeps only the largest 1000 entries of each vector. This device i~
satisfactory deep within the ferromagnetic region of the model. However after studyviug
the Perron vector in cases near the critical temperature we found that it contained almost
no small entries. In different language. every configuration in the “spiu” arrav contributes

significant]yv to the partition function.




As a substitute for sparsity we propose to limit the number of distinet values that can
occur among a vector's components. We do this by means of a familyv of “indicial vectors™.
Here is a sketcl of the idea. More details are given in Section 2.

A vector in R¥" may be thought of as a function on {1.2.....2"}. What we call an
indicial function is reallv a partition of this index set into disjoint subsets on each of which
the vector is coustant. Thus the vector takes ou fewer thau 2" distinct values. perhaps only
a few million of them. This sort of vector recalls H. Lebesgue's approach 1o intearation
via step functions. For a given partition f the set of all representable vectors forms a
subspace Sy of R*". We how 10 the influence of computer science and start counting at
0. If {¢g.....cam} denotes the standard basis and if {15.93.214.%866} is one subset in the
partition f then ;5 + €g3 + €213 + €566 is one member of a natural orthogonal hasis for .
In otlier words. the natural basis vectors of R*" are aggregated according to f to produce
an orthogonal basis of S;. Au important feature of our approach is that these basis vectors
are never represented explicitly in the computer. Careful index manipulation takes their
place. Moreover our choice of f vields a manageable representation of the projection I'e of
M, onto 8. Py is nonnegative and irreducible. Pr is not as sparse as A/, but we Lold it
in a compact form that permits the efficient formation of Pyu- for appropriate .

There is some freedom in the choice of the familv of f's. Qur f's are a compromise
between physics and the very special structure of 1, Details are given it Section 2.

The next task is to find the Perron vectors of Pr. Recall that the 1op two eigenvalues

of M, coalesce as 1hie temperature heconmes critical. We have used two approaches:
{a) a block power method with a block size of 2.
(h) a nousyvmmetric Lanczo- code.

The details are given in [PHO1,. It turns out that it pavs to compute the two largest
eigenvalues toeether with their column and row eigenvectors. The reason that conven-
tional 1echniques such as these are appropriate is that with our current indicial functions
f.dim 8; = On2 =1 and so F: is of modest order. In addition we form and compute
similar quantities for Q.. the iorthogonal) projection of M onto an associated subspace
Sy The extra information from Qg allows us to compute an approximate Perron row
vector y~ to match the Perron column vector » for Py. Py and Q4 share the same Perron
root. Fortunately @ is diagonally similar to Py and need not be represented explicitly.

We would prefer 1o use the oblique projection of M, onto the pair of subspaces (§;. 8
but we have not vet found a convenient (sparse) representation because some of the canonical
angles hetween Sy and Sy equal 7 /2 and this fact complicates the representation.

Associated with the vectors r (Pyr = r7) and y° (y"Qyp = 7y") are vectors 25 € Sy
and w7} € Sy that approximate the eigenvectors we seek. It is essential to he able to bound
or estimate the accuracy of our approximate eigentriple (7. g w3).

Fortunately by using our special bases in & and Sy appropriately we can compute




(exactly in exact arithmetic) the associated residual vectors
rpi=M, 2y - 247y sppi= Miwp —wpmy

and

wy = wpsp /Ul gz gl
Although ry € R?". s € R?" we can accumulate [irs]}? and lisrll¥ and wy during the
computation of z; and wh and thus avoid ever having to store them. This is a key feature
of the efficiency of our method. From ||r]. ||s]|. and ~; we can compute error hounds and
error estimates. This is discussed in [PHI1].

It is likelv that our error estimates indicate that z;. w'y and 7y are not sufficiently accu-
rate. In that case we pick the next indicial function f in our family so that fis a refinement
of fand 8¢ C &;. dim §; = 2 dim Sy. Then we repeat the cvcle of approximations until
the accuracy requirement is met or our re-ources are exhausted. This is not an iterative
method because. in a finite number of steps. the indicial function becomes the identity.

By creeping up 10 adequate approximations from below we ensure that we end up with
the coarsest indicial £ uction that meets the given tolerance. In this way do we achieve the
minimal representation. from our family. that gives our method it~ name.

It i worth repeating that at no time iu the cvele do we need 1o store a vector with 2
COMponent s,

Quantities of interest are usually partial derivatives of the partition function. If we used
differences 1o estimate derivatives that would ~harply increase the required accuracy of our
approxitnations. Tortunately S. Gartenhaus [Gars3) and N. Fuchs {FueN9] have shown that
<ome of the quantities of interest may be expressed in terms of = and «” and ~o there i~ no

need 1o use differences. This increases the scope of our approacl significantly.




2 Projections of duodiagonal matrices

Figures 3 and 4 show that the Perron eigenvector of My mayv be approximated guite
well by vectors in which certain positions are constrained to carry the same value. The
challenge is. of course. to specifv in general the right positions. Our approach makes heavy
use of the binary representation of the numbers G.1..... 2" — 1. lu particular we always
use n-bits in a representation. Thus the positions in a 2"-vector are indexed by the bit
strings {00---0.00---01.....11---11}. If we think of these strings as configurations of a
1D lsing model then we obtain equal contributions to the (total) partition function from
all configuratious (strings) which have the same I (the number of 1's) and 7 (the number
of trausitions). Thus we can group the bit striugs by the values of (k.?). For v = § thi~

partition is shown in Figure 1.

# 1's  # transitions iudicial sets  indicial vectors

0 0 {0000} 0

1 l {1000.0001} (- )
] 2 {0100.0010} (440
) 1 {1100.0011} €124+
2 2 {1001.0110} (= (0
2 3 {1010.0101} L+ 0
3 i {1110.0111} 1y T e
3 2 {1101.1011} ATEREY
1 0 {1111} €15

Figure 1: Indicial sets and basi~ vectors for bit strings of length n = 4,

The approximation is not bad at the visual level but may weu not he adequate. \We
need a svstematic wayv to refine the partition induced by A and 1. Our choice may not he
optimal but it has the practical virtue of exploiting the duodiagonal structure of 1/, . We
use the last [ bits in the strine. for /= 1.2... .. as a refining parameter. For large enoucl
[ the original index set is recovered. The partition for n = 5.1 = 1 is shown in Figure 2.
In each fieure the last column lists a set of orthogonal vectors in R®" which we call S, ;:
n=4.1=0for Figure 1. n = 5.1 = 1 for Figure 2. A careful analvsic (see [Hen91]) show«

the cardinality of this set:

-— - _] \
1Soa) = 201 + (-1 l-;”“ ))< n2-t,

Our method’s utility depends on obtaining adequate accuracy for small values of /. However
defining S, is not enough. We need to derive the projection Pf:, of M, onto span(S,. )
without actually using the indicial vectors exhibited in the figures above. Instead. by
analysis. we determine a priori the positions and values of the nonzeros in P¢.

The duodiagonal form of M,, i« escential to the analvsis. The key fact is that the action

w?




trailing bit  # 1's  # transitions indicial sets indicial vectors

0 0 0 {00000} ‘0

0 1 1 {10000} €1

0 1 2 {00010.00100.01000}  ¢>+ ¢y +(x
0 2 1 {11000} a3

0 2 2 {00110.01100} 6= €12
0 ) 3 {10010. 10100} €1a =~ €0
0 2 3 {01010} 10

0 3 1 {11100} Con

0 3 2 {01110} 3

0 3 3 {10110. 11010} far+ (o
0 4 1 {11110} ‘30

1 i 1 {00001} ‘0

1 2 1 {00011} €3

1 2 2 {10001} €1-

1 2 3 {00101.01001} (5 + 0y
1 3 1 {00111} -

1 3 2 {10011.11001} €1u =+ f
1 3 3 {01011.01101)} 11+ €13
1 3 4 {10101} €

1 4 1 {01111} €15

1 4 2 {10111.11011.11101} (2 + €37 + (24
1 5) 0 {11111} €31

Figure 2: Indicial sets and basis vectors for n = 5 and / = 1.
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of M, on any vector in S, ; can he expressed as a linear combination of either 2 or { vectors
in S,.i4+1. To illustrate the idea we sliow Liow to obtain a column of P¢, for n = 5./ = 1.
Let w denote the last  bits of an u-string and let x_ ., denote the indicial vector specified
by w. k. and 1. e.g. {00010.00100.01000} is the indicial set with k= 1.7 = 2.0 = 0 (witl
n=>351=1) Thus ry1: = €3 + ¢y + ex. The duodiagonal structure requires that tlhe

nonzeros in column j occur in rows 2j mwod 2" and (25 + 1) mod 2.

Myrgrr = Muea+ Myeg+ My

(aey + bes) + (aes + beg) + (bey, + ce7)

a(c3+es)+ bles + €o) + beye, + €7

= argpi2+ bro1as+ brggyg + ¢y

See the matrices illustrated in the Introduction for the meaning of a. b. and ¢. Next we

must determine the triples (W' A7 11 such that the inuer product
CINERTINT FRIY

does 1ot vauish. We return 10 our exaniple above and read off the results because all indicial

vectors are pairwise orthogoual.

(rooa2-Moroy2) = ajroeaall? = 2a
(rora2- Murone) = bleoraslls = 20
(rovaa-Myrery = bgeaalls = b
(eo122- M, 0p12) = cleamonit = ¢

All other entries in column (0. 1.2) vanish. Since the indicial vectors are not normalized a
diagonal scaling is necessarv. The result i< that the 4 nonzeros in colummn (0.1.2) of F¥
are just a.b.b. c and thev occur in the indicated rows. Thus P is easilv stored. in compact
form. in a rectangular array as discussed in the next section. Some other columns of P will
have only 2 nonzeros. In the general case the precise form of P¢ is not easy to determine.
However the analyvsis has been done and the details may be found in [Hen91]. The result
i~ that P may be computed with aritnmetic effort proportional 10 |S, ;| and with storage
proportional to (S, ;+1]. By means of this combinatorial analysis the largest two eigenvalues
of M, may be approximated by the largest two eigenvalues of P,f_', and this can be tackled
by more conventional techniques.

Here is a sample of the sizes of the sets &, and the maximai number of ones in an

indicial vector x = r_ ;.




7 2" IS max I S, gl D wax [T
| ! E ; - bt ] w. bt

l | L er= ‘ b=

U NTCE I ANEI 20 t 352 | 6

200 105 . 10" | 6N | %20 | 2192 | 2520

‘ i i

3000 107 < 10" 162y 5005 100 | 5632 | LAY . 10

Table 1. Combinatorial properiies of suffix-hased indicial sets




3 Implementation issues

We discuss the data structures used for indicial sets and indicial vectors »_ ;. as well a~

efficient algorithms for manipulating coefficient vectors.

3.1 Representation of vectors

I order 1o turn the set S, ; of indicial vectors »_ ;. into a basis a 10tal ordering on the
mdex triples (w. A1) with |« = [ is needed. Recall that = is the /-bit suffix of an n-strine.
Such a triple is legitimatc if the corresponding index set i nonempty (or. equivalently. if
X kg 18 a vector in S, ;). The orderiug ou legitimate triples uses the number i) of which
« 15 the binary representation:

(. bty =< (k1)

if and only if.

tay rlwr < Mo i or

’

{h)y ritwi=rijand b < M. or

() ioi=rvl ) b=k and 1 < V.

We use @ Lot for the ranking of i k. 1) under this ordering. i.e. @ maps (o k. 1) o a
nohnegative nteger,
Let X denote the matrix whose columus are the vectors in S, ; iu the prescribed order.

Theu anv vector ¢ in spanit S, ;) mav be written as
9=27\yg

where g is the suffir-based coc fficicut veetor of g. Note that ¢ = R*" while g < R'S“ﬁ.

Itis tempting to use (o k1) as an index so that any g could be held in a 3D arrav of real
numbers, The trouble with this scheme is that there are holes (illegitimate triplesi and o it
is a bit wasteful of storage and. even worse. every access 10 the array must check whether the
index is legitimate. Instead we simply map the legitimate triples onto {0.1..... IS0l —1}
using .

The first task is to obtain ® given (~.k.7). The definition of <; shows that f plavs a
minor role aud so we only need a 2D array. based on v(«) and k. which we call index. The

needed entries in the 2’ x (n + 1) array indexr may be computed initiallv. Then
S(w. k. t) = index[r(e)]k] + 1.

The next task is to represent the inverse mapping: given a value for & find .. k. and 1.
This is easily accomplished with three 1D arravs of length |S,, |. one for each of «. k. and

{. These are initialized before the calculations begin.




3.2 Advantage of the indexing scheme

When computing the dominant eigenvectors of a projection matrix the arrav ¢ is treated a~
a conventional vector in R* ! but when we need to know au entry of ¢ = Y g in R we
proceed as follows. To find ¢(7) first obtain p. the n-bit binary representation of /. together
with its I-bit suffix & (the last [ bits of ). Next compute & aund f from y. Finally ook up

®(o. b 1) as described above. Then
gli)y= g(eia. k. ).

It i< these simple bit manipulations and table look-ups that enable us to avoid thie use of

an array with 2" entries.

3.3 The Projection Matrix

As mentioned earlier ¢, has at most 4 nouzeros per row and so contains somewhat less
than 4,8, ;" nonzeros. We represent P a~ a sequence of packed columns in a 1D array
col_proj. lu addition two inuex arravs col and row are needed: the jith nouzero i~ in
position trowtiy. colti)) aud has the value col_prajii). The vector P4 i is formed by takine

the linear combination of P's cohunns with coeflicient~ given by r.

3.4 Application of the transfer matrix to approximate eigenvectors

Althoueh the use of suffixes = 10 refine our model has no justification from plivsics it doe-
have the virtue that the action of M, ou vectors in span(S, ;) can be computed exactiy
fmodulo round off error). Consequently the norms of residual vectors mayv he computed
without storing arravs of length 2. The reason. briefiv. i~ that M, maps span(S,.;) into

spantS,, ;s ). Details are given in [PHOI.

3.5 Extracting Information from the Projections

Even though {S, ;] < 2" it i< essential to use a fairlv efficient method to compute the
two dominant eigenvectors of P*, and the two dominant row eigenvectors of PR, (whicl i~
diagonally similar to P¢, and so does not need separate treatment). Although we only want
thie dominant eigenvector we consider the calculation of two eigenvectors 1o be essential for
efficiency when the temperature in the Ising model is near critical and there is less and less
separation between the two largest eigenvalues.

We have tried two methods: (a) the block power method with block size 2 (called
subspace iteratiou by numerical analysts and structural engineers). (h) the unsvmmetric
Lanczos algorithm.

A block Lanczos algorithm with block size 2 would probably be more efficient but we

have not developed a code for that vet. Indeed the unsyvmmetric Lanczos code is not vet

10




a standard method but in our experiments it hecomes increasingly hetter than the hlock
power method as v increases bevond 15.

More details about the implementation and our error estimates are given in [PH91].

11




4 Numerical results

Here are the results from a preliminary code using the nonsvmmetric Lanczos algorithni.
For the hardest case. 1 = 30 and temperature within 3% of critical. it 100k about 20 seconds
on a Sparc statjon to obtain the partition function to 3 decimal digits. and ahout 5 minutes
10 obtain 5 decimal digits. In the tables Lelow. GRQ is the generalized Ravleigh guotient
"M, v/yxr. The temperature T = 1.6 is deep within the ferromaguetic region. T = 2.2 is

within 3% of the critical temperature.

/ approximation GRQ dim  time (~)
2 35ININGTCIY (2.7 > 107")  3.51RON2226T (=18 > 107%) 14~ 0.8
30 35INONI2905 (2.9 > 1077)  3.5INOS3TIN2 (=245 1077) 232 1.3
4 35180839756 (=38 x 107%)  3.51R%9839519 (=625 107%) 332 2.0

Table 2: Resulis for n = 10. B = 0.0001. T = 1.6 (true eigenvalue = 3.31x%9510135)

/ approxmnation GRQ dim  time (5
20 25025207046 (2.3 - 107 23922007033 (=01 = 107 14N 0.8
3025923360346 (4.4« 107 25021803640 (=1.1 1071 232 1.5
4 25922660120 (=2.6 5 1077) 23922266644 (~6.6 > 1077 352 2.4

Table 3: Results for 1 = 10. B = 0.0001. T = 2.2 (true eigenvalue = 2.3922022153)

[ approximation GRQ approximation - GRQ dim  time is)
2 3AIR0N02741  3.5IN9THONTN 1.3 107" GRX H.2

3 351N97S0552 0 45184731705 1.9~ 107" 1232 N3

4 351IN0TIR223 35189772 -2.35 107" 2192 17.0
D 3AI807T6100  3.51%9773601 5.0 % 107% 3NT2 35.7
6 35189776241 35180776145 9.6 » 107" GTNd T1LT
T 3.5INOTTRH08 ANYTTTING -T& %1070 11776 132.0

Table 4: Results for n = 20. B = 0.0001. T = 1.6

12
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R S N

N = SRR VLI SO SURY

approximation
INTH164697
IRT3559732
HRT2024943
ARGR]H053K
HRT257601R

ART2475229

U U

Table 3

approximation
3.518979%036
35187421095
3.51%976G59G2
3.51R897HIRG9
35189767326
3.21RG774542

GRQ
3873011057
SRTING2423
SST224TRNN
HNGY016T6Y
SRT2RO9R0

DNT29%1335

N R N

»: Results for

GRQ
DIRO2TTN2G
DINT2TI68,
DIN9T34194
SIN9630%14
S INOTGH430

DIROTTH2S2

Table 6: Results for

approximation
2.3863%77396
2.5864495960
2.58639893%9
2.586373R8510
2.5863633205
2.5%63635130

GRQ
3864247904
563367635
5863409514
5863429038
5863620747
5863531549

NN RN

approximation -

approximation -

22> 1074
1.7 > 1079
G.X> 107
-1.7 > 107"
-23~ 107"
-5.1x 1077

5.2 1077
1.5 1077
3.2 107"
1.2~ 107"
(9. 107"
-G.9 > 107¢

approximation - GRQ

1.6 x 10~*
1.1 » 10~
5.8 1073
3.1>10°°
1.2 » 107
-2.0x107°

GRQ

GRQ

dim
ONN
1232
2192
3NT2
G7Rd
11776

n=20.B=00001.7=22

dim
162%
3032
5632

10432
19204

35456

n=30.B=00001.T=16

dim
162%
3032
3632

10432
19264
35456

Table 7: Results for n = 30. B = 0.0001. T = 2.2

thne (=)
.\

5.2

—_—

yA
D =1
[N N

<

-1
~
[
-1

e (s}
1.~
16.6
50.9
101.5
213.3
4720

time (s}
21.1
17.5
3%.3
64.3
139.1
316.5
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Figure 3: Dominant column eigenvector of M,.n = 8. B = 0.0001. T = 1.6.

It
i
H

‘I
il
if




8. B =0.0001.T = 2.2.

Figure 4: Dominant column eigenvector of M, . n




Legal Notice

This report was prepared as an account of work sponsored by the
Center for Pure and Applied Mathematics. Neither the Center nor
the Department of Mathematicy, makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for

the accuracy, completeness or usefulness of any information or
process disclosed.




